
How Beeper Mini Works
It's a technical deep dive, so buckle up!

BEEPER

DEC 05, 2023

42 Share

We’ve written this blog post to help you understand how Beeper Mini works. At Beeper, we
believe that it is critical for you to be able to trust the so>ware that you use, especially
something as important and sensitive as your chat app. We work to earn and keep your
trust in three ways:

1. Transparency - since we started Beeper 3 years ago, we’ve been taking opportunities
like this to explain how Beeper works. We have a proud history of building products,
like Pebble, and stand publicly behind our work.

2. Open source - each major piece of so>ware that we’ve built to interact with other chat

Turnyourphone
numberblue

NewMessage

To: +1(415)555-5555



networks is open source at github.com/beeper.

3. Privacy and security-aligned business model - we make great so>ware and charge a
small subscription fee. Simple as that. No ads. Your data stays private.

Read the entire post for the full story. TLDR: the following features of Beeper Mini ensure
that all communication is encrypted and secure.

All messages are end-to-end encrypted before being sent. Beeper (and Apple) cannot
see your messages.

Encryption keys never leave your device.

Beeper Mini connects directly to Apple servers. There is no Mac server relay, like
other apps.

No Apple ID is required. Beeper does not have access to your Apple account.

Your contact list never leaves your device.

Don’t believe this is possible? Try the open-source Python proof of concept on your own
computer to see for yourself. Security researchers are invited to verify all claims that we
make, see appendix below.

Beeper Mini works diWerently than Beeper Cloud in important ways that increase your
privacy and security. Beeper Mini is a standalone Android app. It does not require a cloud
server to send and receive messages. It also implements Apple’s end-to-end encryption
protocol natively within the Android app itself. All messages are end-to-end encrypted
before they are transmitted directly from your device to Apple servers. Learn more about
iMessage encryption on Apple Platform Security page.

This is now possible because the iMessage protocol and encryption have been reverse
engineered by jjtech, a security researcher. Leveraging this research, Beeper Mini
implements the iMessage protocol locally within the app. All messages are sent and

Security and privacy

How it works



received by Beeper Mini Android app directly to Apple’s servers. The encryption keys
needed to encrypt these messages never leave your phone. Neither Beeper, Apple, nor
anyone except the intended recipients can read your messages or attachments. Beeper does
not have access to your Apple credentials.

We built Beeper Mini by analyzing the traZc sent between the native iMessage app and
Apple’s servers, and rebuilding our own app that sends the same requests and understands
the same responses. Learn more by reading jjtech’s blog post, iMessage Explained, and his
proof-of-concept Python implementation on Github. Anyone can download this code, run
it on any computer that supports Python, login to their iMessage account, and send and
receive iMessage protocol messages. No Apple hardware required.

Another change is that Beeper Mini does not use the Matrix protocol, encryption or code
like Beeper Cloud. It is a completely new codebase, versus our \rst Android app, which was
a fork of Element. In the future, we are planning to add Matrix network support back in,
along with support for the 15 other chat networks in Beeper Cloud. Read more about our
roadmap.

When you \rst start the Beeper Mini app and sign in with Google, a registration request is
sent to our Beeper API Server. This service only exists to verify your subscription status, as
well as give our support team the information they need to debug any issues that you may
be running into (including your name and email address). No iMessage credentials or
messages are transmitted through these servers, which are for Beeper Mini account
management only.

A>er that, you are prompted to allow noti\cations, which sends a push token to Beeper
Push Noti\cation service, which enables our servers to send push noti\cations to your
Android device. These push noti\cations do not contain the contents of messages.

Inside the Beeper Mini Android app

1. Sign in

2. Permissions and registration



Next, you are prompted to grant contact list and SMS permission access.

Contact list access is used to match phone numbers to contact names, and display
pro\le pictures. Your contact list is never sent to Beeper servers.

SMS access is used to send an SMS text message from your number to Apple’s
“Gateway” service. The gateway sends a response via SMS, and the contents from that
SMS response are sent to Apple to register your phone number as a blue bubble. Your
SMS chat history is also used to determine if any of your recent SMS chats were with
people who have iPhones. If so, these chats are shown in the inbox.

It’s at this point that the app generates encryption keys that are used for end-to-end
encrypted messaging. The public key is sent to Apple servers, and the private keys are
stored in the Android device local \lesystem. Beeper Mini is now signed in.

Optionally, you may also sign in to your Apple ID to enable sending/receiving from your
email address. This will also enable you to send and receive messages from other Apple
devices like iPad or Macs. The Apple ID login sends your username, password and a 2-
factor code using encrypted HTTPS requests directly to Apple servers.

3. Optional Apple ID sign in

4. Sending and receiving messages



Apple’s iMessage protocol works over Apple Push Noti\cation service, which most
developers would be familiar as the service that allows them to send push noti\cations to
their iOS applications. For iMessage protocol, all messaging traZc bows over this service
in both directions, encrypted with keys generated locally on each device. Beeper Mini
connects to APNs over TCP, using the credentials generated during the login process.

A persistent connection to APNs is needed to be noti\ed of new incoming messages in
real-time. On an iPhone, an APNs connection is maintained by the operating system, and
connected at all times. In Beeper Mini, the connection can only be maintained when the
app is running, since Android does not support APNs natively.

To work around this limitation, we built Beeper Push Noti\cation service (BPNs). BPNs
connects to Apple’s servers on your behalf when Beeper Mini Android app isn’t running.
We can do this while preserving user privacy thanks to Apple separating the credentials



needed to connect to APNs to send and receive content (the “push” credentials) and the
keys needed to encrypt and decrypt messages (the “identity” keys). Push credentials can be
shared securely with the Beeper Push Noti\cation service, and BPNs can connect to APNs
on your behalf. Whenever BPNs receives an encrypted message that it won’t be able to
decrypt, it simply disconnects from APNs and sends an FCM push noti\cation to wake up
the Android app, which then connects to APNs, downloads, decrypts and processes the
incoming message. BPNs can only tell when a new message is waiting for you - it does not
have credentials to see or do anything else.

BPNs will be noti\ed when you receive a message, but without the encryption keys it can’t
decrypt anything BPNs receives. Also, without the identity credentials, BPNs can’t send
messages on your behalf. If you don’t mind not receiving real-time push noti\cations for
new messages, your BPNs can be disabled entirely by going to Settings → Manage
Connection → Enable Push.

When you create a new chat, the phone number or email address of your intended recipient
is transmitted to Apple servers. If the contact is on iMessage, a public key is returned.

Sending messages is even simpler. When you hit send, the message is encrypted with the
public keys of the intended recipients and sent directly to Apple servers via an SSL
encrypted TCP connection over APNs.

Beeper Mini connects to a few other services as part of its operation. We use a self-hosted
installation of Rudderstack (https://rudderstack.beeper-tools.com) for analytics and
diagnostic events, which we use for improving the app but can be disabled in Settings →
Preferences →Share Diagnostics. We use OneSignal to send education and account related
push noti\cations, and RevenueCat to help integrate Google Play subscriptions.

Other than that, that’s it! No other servers or services are used. Beeper Mini keeps your
messaging secure by keeping all messaging credentials, keys, messages and media local to
your phone, and only sends them directly to Apple’s servers a>er encrypting them with
iMessage’s end-to-end encryption algorithm.

5. Analytics and other services



We value, actually, we treasure feedback. If you run into a bug or have a feature request,
there’s a button in-app to report a problem. We read every single report.

Brad Murray and Eric Migicovsky
Beeper cofounders

To write this blog post, we performed a red team analysis on our own app. We made
extensive use of the excellent mitmproxy project to capture the network traZc coming
from a real phone running a modi\ed version of the Beeper Mini client. A modi\ed version
was needed for this analysis in order to disable certi\cate pinning, so that the Beeper Mini
Android app would accept being connected to mitmproxy instead of only accepting Apple’s
certi\cates for that connection. If researchers would like a copy of this version of Beeper
Mini (with cert pinning disabled) to perform a similar analysis, please contact us at
security@beeper.com.

Below is a capture of the requests that we make with Apple’s servers over HTTPS when
logging into iMessage with your phone number. We \rst register with a service named

albert.apple.com, which sets up our “push” credentials and allows us to connect to
APNS. We then make two requests to get the number we need to send an SMS to register
our phone number which is diWerent for each carrier (This capture was taken with a device
registered with Rogers, a Canadian cell phone carrier ). Finally, we take the contents of

the response SMS (not shown here) and send it to identity.ess.apple.com,
registering our account with iMessage and generating the “identity” credentials we’ll use to
send and receive.

Appendix



Optionally, you can also register your Apple ID with Beeper Mini as well, as shown in this
capture. You \rst provide your username and password over encrypted HTTPS directly to
Apple’s servers, followed by a second request to provide your 2FA code. We can then
register for iMessage again, this time providing the certi\cates from both the earlier phone
number registration and our new Apple ID registration. Registering these together in the
same call links them together, allowing any other device that you’re logged in with your
Apple ID to send and receive with both your Apple ID emails and your phone number.

Next, a capture of the keys shared with the Beeper Push Noti\cation sevice (hostname

imux.beeper.com). Note, the RSA private key in this request is your “push” credentials
that allow you to connect to APNs, not your “identity” credentials that allow you to encrypt
and decrypt iMesssages. Push credentials cannot be used to escalate permissions or access

anything other than the presence of a new APNs push noti\cation. Check out apns.py in
pypush PoC to learn more about push credentials.



Sending and receiving is not shown here, as they are not done over HTTP but instead

through an SSL encrypted TCP connection to APNs. The APNs servers are hosted at *-
courier.push.apple.com , where the asterisk is replaced by a number between 1 and
30. All message contents and media are encrypted with your “identity” keys, which never
leave your Android phone.

There is a /login endpoint on Beeper servers, but as mentioned previous, this is only for
subscription management purposes. The client submits the token received from the Google
login process to our servers, and the response contains their subscription status. No
iMessage credentials are ever sent to Beeper servers.



Note: Beeper and Beeper Mini are entirely independent so>ware products, with no
relationship to, or endorsement by, Apple, Google, or any other supported chat networks.

iMessage, Apple, Mac and iPhone are trademarks of Apple, Inc.

Android is a trademark of Google, LLC.

19 Likes · 4 Restacks




